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Boundary Effects on Chaotic Advection-Diffusion Chemical Reactions
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A theory of a fast binary chemical reaction, A�B ! C, in a statistically stationary bounded
chaotic flow at large Peclet number Pe and large Damköhler number Da is described. The first stage
correspondent to formation of the developed lamellar structure in the bulk part of the flow is
terminated by an exponential decay, / exp���t� (where � is the Lyapunov exponent of the flow), of
the chemicals in the bulk. The second and the third stages are due to the chemicals remaining in the
boundary region. During the second stage, the amounts of A and B decay / 1=

��
t

p
, whereas the decay

law during the third stage is exponential, / exp���t�, where �� �=
������
Pe

p
.
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@tna;b � �v 	 r�na;b � 
a;br
2na;b � Rnanb; (1) of the chemical engineering principles behind various
A common expectation is that random advection
should essentially accelerate chemical reactions rate in
fluid phase, since it should lead to homogenization of the
reaction mixtures. Then dynamics is determined by
an interplay of three factors: diffusion, advection, and
chemical reaction. Typical situation realizing in chemical
reactors is that the chemical reaction itself is much faster
than mixing and diffusion, i.e., the Damköhler number
Da, which is defined as the ratio of the mixing time to the
characteristic time of the reaction [1], is large. For the
binary reaction this separation of temporal scales results
in formation of lamellar structure, built of stripes, popu-
lated solely by one chemical. The stripes of different
chemicals are separated from each other by an interface
of complicated shape, and the chemicals coexist only in
the narrow interface domain where the chemical reaction
occurs. The reaction is limited by diffusion in the sense
that diffusion controls fluxes of the chemicals into the
interfacial reaction zone [2–4]. The physical picture of
the acceleration due to the random advection is that it
stretches domains populated by one chemical into thin
sheets, so that the chemical reaction driven by diffusion
proceeds more efficiently because of an essential increase
of the interface area. In this Letter, we explain how this
general physical picture formulated initially for un-
bounded flows applies to chaotic flows confined to a finite
geometry.

We consider a binary chemical reaction, A�B ! C,
in a dilute solution of two chemicals. We study a decay
problem, with an initial distribution of the chemicals A
and B, created by injecting solution of one chemical, say,
of A, into a solution of the other chemical, B. It is
assumed that the inverse reaction C ! A�B is negli-
gible, i.e., there is no back influence of C on the distribu-
tion of A and B. Then molecular concentrations of the
chemicals, na and nb, vary according to the following
nonlinear governing equations (see, e.g., [5]):
0031-9007=03=90(13)=134501(4)$20.00 
where R is the reaction rate coefficient, v is the velocity of
the flow (which is assumed to be incompressible), and 
a;b
are the diffusion coefficients of the chemicals. We assume
that the fluid dynamics is independent of the chemical
reaction; that is, the velocity does not sense changes in the
chemical concentrations nor heat released in the result of
the chemical reaction. Our approach is also applicable to
the case, realized in tubular chemical reactors, when the
solution of the chemicals, prepared at the entrance, is
then pushed through a pipe. In this case, the position
along the pipe plays the role of time in the decay problem.

The major question addressed in this Letter is: how do
the total amounts of chemicals, Na;b �

R
drna;b�t; r�, de-

cay as time t advances? We focus primarily on the stoi-
chiometric case Na � Nb. This case is of major interest
for applications as it allows one to get pure product C (not
mixed with the reagents) by the time reaction is com-
pleted. (An effect of a mismatch between Na and Nb is
also briefly discussed.) We identify major stages of the
chemical reaction and relate them to the chemical decay
in different parts of the flow. An essential part of the
evolution is related to the boundary region. We discuss
mainly the case of 
a � 
b � 
 (it is argued later in the
text that 
a � 
b does not lead to significant changes in
the theory). Then one obtains a closed equation for the
difference field, n � na � nb,

@tn� �v 	 r�n � 
r2n; (2)

from Eq. (1), i.e., one finds that n�t; r� is a passive scalar
field. Note that n has no definite sign and that

R
drn � 0

in the stoichiometric case, Na � Nb.
We assume that the chaotic statistically steady velocity

field v�t; r� contains only few harmonics of the reservoir
size; i.e., the flow is smooth. This regime can be realized
in chemical reactors with mechanically rotating mixers
or externally driven magnets stirring the fluid in the
perfect mixing devices and also in the tubular reactors
at moderate Reynolds numbers. (See [6] for a discussion
2003 The American Physical Society 134501-1
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reactor designs.) The passive scalar advection in a smooth
chaotic flow is a well studied (by both theoretical [7–11]
and experimental [12–14] means) subfield of statistical
hydrodynamics (see also reviews [15,16]). The passive
scalar decay theory, developed in [11,17] for an un-
bounded flow, was recently modified for bounded flows,
i.e., for chaotic flows with suitable (no slip) conditions on
the boundary [18]. Smoothness of the flow allows one to
approximate the velocity difference between close points
by a linear, although fluctuating in time, profile. In the
bulk region, the linear profile approximation is valid for
separations smaller than the system size L. In the periph-
ery, i.e., close to the solid boundary (wall), the linear
profile approximation is valid for velocity fluctuations on
a scale smaller than a distance to the boundary. An
important consequence of the linear velocity profile ap-
proximation is that close Lagrangian trajectories diverge
exponentially in time. The mean logarithmic rate of
the nearby Lagrangian trajectories divergence defines
the Lyapunov exponent of the flow, �. Notice that in the
peripheral domain advection is essentially anisotropic,
and the stretching rate along the boundary is estimated
by �, while the stretching rate in the direction normal to
the boundary is significantly smaller.

It is straightforward to derive from Eq. (2) equations
for correlation functions of n (the derivation procedure is
similar to the one described in [10,11]). The equation for
the mean value of n, hni, derived by averaging over times
larger than the correlation time of the flow �0, is

@thni � r��D��r�hni� � 
r2hni: (3)

In the case of a short-correlated (in time) flow, ��0 � 1,
the turbulent diffusion tensor D is expressed through
the velocity pair correlation function: D���r� �R
1
0 dthv��t; r�v��0; r�i. Equation (3) remains valid in

the general case. However, for ��0 � 1 the relation be-
tween the eddy-diffusivity tensor and the velocity corre-
lations becomes more complicated. In the boundary
domain longitudinal and transverse to the boundary com-
ponents of the velocity behave as vk / q and v? / q2

(where q is the separation from the boundary); thus, the
corresponding components of the tensor D are Dk � �q2

and D? � �q4=L2. Description of the chemical reaction
problem is based on the solutions of Eq. (3) in different
spatiotemporal domains. The eigenvalue problem set by
linear Eq. (3) requires explicit resolution in the peripheral
domain. This problem was solved in [18]. Let us stress
that the solution of Eq. (3) is sensitive to velocity fluctua-
tions and cannot be obtained in the framework of any
dimensional arguments. Here we use the results of [18] for
hni to establish the dependence of Na;b on t. The brief
style of this Letter does not allow us to present the
complete analysis here. Therefore, below we report final
results, omitting details of the derivation. To clarify the
results, we also pay special attention to presenting a clear
physical picture of the phenomenon.
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First we discuss characteristic spatial scales in the
problem. The size of the system, L, which is also the
chaotic flow typical eddy scale, is the largest scale in
the problem. A comparison of the advection and diffusion
terms in Eq. (1) sets the dissipative scale of the flow,
which in the bulk region is rd �

���������

=�

p
. We assume that

the Peclet number, Pe� �L=rd�
2, is large; i.e., in the

asymptotically wide range of scales, L � r � rd, advec-
tion dominates diffusion. The width of the diffusive
boundary layer rbl is found from the balance condition
between the molecular diffusion 
 and the transverse
component of the turbulent diffusion tensor D?. One
finds rbl � Pe1=4rd, i.e., rbl > rd. Yet another important
scale, associated with the chemical reaction itself, is the
size of the reaction zone rch (the width of the interfacial
domain where the chemical reaction occurs). In the bulk
region the scale is estimated by rch � rd��=�Rnm��

1=3,
where nm is a typical concentration of the chemicals
inside the layers [2]. (The estimate for the width of the
reaction zone should be modified near the boundary,
where it appears to be larger than in the bulk.) Initially,
rch is much smaller than rd; the inequality is a conse-
quence of the Da � 1 assumption. (Indeed, in accordance
with the definition, the Damköhler number can be esti-
mated as Da� Rn0=�, where n0 is a typical value of the
initial chemical concentration. Thus, at t � 0, rch �
Da�1=3rd.) However, rch grows as nm decreases. Thus,
even though the separation of scales is perfect initially,
it eventually breaks down at the latest stage of the chemi-
cal reaction. A cartoon illustration of the scale hierarchy
is shown in Fig. 1. The magnified striped structure is
shown on the chart in the upper right corner of the figure.
Regions populated by one chemical are single-colored. To
resolve the interface domain, even stronger magnification
is needed. Dependence of the chemicals concentrations on
the coordinate normal to the interface is shown schemati-
cally on the chart in the lower right corner of the figure.

The separation of scales, rch � rd; L, allows an impor-
tant simplification in the description. Indeed, the chemi-
cal reaction takes place in the rch-narrow interface
domain, where the values of na and nb are comparable.
Outside this narrow region, i.e., in the region dominated
by one of the chemicals, the presence of the other chemi-
cal is negligible. Thus, in the limit rch ! 0, i.e., when the
reaction zone becomes infinitesimally thin, one obtains
na � n; nb � 0 for n > 0 and na � 0; nb � �n for n < 0.
These relations imply a remarkable conclusion [2,4]: the
fast chemical reaction can be described in terms of the
linear setting (2) which does not contain the chemical
reaction rate coefficient R. The reaction rate is deter-
mined by the diffusion fluxes of A and B to the n � 0
interface. These fluxes are equal to each other and oppo-
site in sign, which is translated, at rch ! 0, into a con-
tinuity condition for rn at the interface. This observation
also means that, while rch is much smaller than all other
relevant scales, our problem is reduced to the problem of
scalar decay in chaotic bounded flow.
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FIG. 1. The chemical reactor boundary is drawn by a solid
line on the main chart. Dotted lines separate bulk, peripheral,
and boundary domains of the flow. The chart in the upper right
corner shows schematically the stripe structure magnified from
the bulk and/or peripheral domains. Black and white regions
are the ones populated by A and B, respectively. The chart
in the low right corner shows (under even stronger magni-
fied glass) distribution of chemicals normal to their contact
interface.
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We find that the chemical reaction (which starts at
t � 0) undergoes the following four stages.

I. Formation of stripes in the bulk.—Advection cre-
ates from an initially smooth distribution a striped struc-
ture of alternating domains of A and B [4]. The stripes
become dynamically thinner; i.e., inhomogeneities of
smaller and smaller scales are produced. Once the
width of the stripe decreases down to the diffusive scale
rd, the stripe collapses (wiped out by the diffusion-
limited chemical reaction) in a time ���1. Since the
stretching (contraction) process leading to creation of
the stripes is exponential in time [7–10,15,16], the initial
stage (when the rd stripes are formed) lasts for �1 �
ln�Pe�=�, i.e., just the time required for the cascade of
passive scalar to run from L down scale to rd. Even
though the interfacial area increases exponentially during
the first stage, Na;b do not vary significantly. By the end of
this stage the bulk parts of Na;b begin to decay rapidly
(exponentially), with a decrement of the order of �,
according to the law of the passive scalar decay in an
unbounded spatially smooth flow [11,17]. Thus, after the
first stage the chemicals remain mainly in the peripheral
region.

Notice also that after the first stage, stripes of different
widths, distributed between rd and L, are present in the
bulk. (This multiscale structure is also seen in the passive
scalar decay experiment [13,14] and in binary-reaction
numerics [19].) When the rd-wide stripe, say, of the
chemical A, collapses, then two nearby stripes of the
chemical B form one wider stripe. Thus, collapse of
rd-narrow stripes is accompanied by creation of wider
stripes, which are shrunk by the flow in turn.
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II. Peripheral-region-dominated dynamics.—The
same process of layered structure formation takes place
in the peripheral domain as well. However, advection,
which is statistically isotropic in the bulk, is strongly
anisotropic in the peripheral domain, where advection is
more efficient in the direction along the boundary than in
the normal direction. This anisotropy causes the layers in
the peripheral domain to stretch mainly along the boun-
dary. The stripes closer to the boundary shrink slower
than the remote ones, since the normal to the boundary
component of the stretching rate decreases as one ap-
proaches the boundary. Therefore, the developed layered
structure (i.e., the one which contains stripes of the
diffusive scale width) occupies a part of the peripheral
region where the amounts of A and B become negligible.
Thus, the empty of chemicals region, formed in the bulk
by the end of the first stage, starts to expand towards the
boundary. As a result, the chemicals are arranged mainly
within a � vicinity of the boundary (wall), �� L=

�����
�t

p
,

where the concentrations of the chemicals remain practi-
cally unchanged. Outside this layer, at L � q � �, the
concentration of chemicals decreases algebraically
hna;bi / t�3=2q�3. During this stage the overall amounts
of chemicals decrease as ��t�, that is, / 1=

��
t

p
. The spa-

tiotemporal picture explained above follows from the
universal form of the velocity field profile in the proxim-
ity of the boundary. This stage lasts for �2 �

������
Pe

p
=�, i.e.,

until � shrinks to the width of the boundary layer rbl.
III. Boundary-layer-dominated dynamics.—Chemi-

cals remain mainly within the rbl-thin (not varying
with time) vicinity of the boundary. The boundary layer
width rbl is still much larger than the reaction zone size
(defined for the boundary region), so that the passive
scalar description applies. The interfacial area where the
chemicals interact does not change significantly anymore.
Thus, due to linear relation between flux of chemicals to
the interface and their concentrations, the algebraic decay
switches to an exponential one, i.e., hna;bi / exp���t�,
for t � �2, where �� �=

������
Pe

p
� L�1

�������
�


p
. This estimate

for the decrement � follows from the condition that the
temporal derivative term and the diffusive terms in Eq. (3)
are of the same order scale rbl away from the boundary.
Then Na;b�t� / exp���t�. Chemicals are mainly concen-
trated inside the diffusion boundary layer. Outside the
boundary layer (at q � rbl), one of the chemicals prevails
and its concentration decays algebraically, / 1=q3. The
passive scalar description in the vicinity of the boundary
layer is broken when rch, which grows exponentially with
time, becomes of the order of rbl, i.e., when at the boun-
dary na;b becomes ��=�R

������
Pe

p
�. One concludes that the

duration of the boundary-layer-dominated stage is �3 �
��1 ln�Rn0

������
Pe

p
=��, where n0 is the initial concentration

of the chemicals.
IV. Nonlinear stage.—By the end of the previous

stage, advection and diffusion homogenize the remaining
amounts of the chemicals, first within the boundary layer
and later over the entire reservoir. After that there are no
134501-3
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inhomogeneities of na;b left in the system. A purely
homogeneous kinetic process takes over: dNa;b=dt �
�RVNaNb (where V is the chemical reactor volume).
Thus, Na;b / 1=t during the final stage.

If Na � Nb, then the proposed scheme is valid until
Na;b become of the order of jNa � Nbj. Then Na saturates
to a constant (if Na > Nb) and Nb disappears exponen-
tially, / exp��RNat=V�. (Note that the exponential decay
starts after a short intermediate stage characterized by
complete homogenization of A due to advection and
diffusion.)

Let us now discuss the effect of unequal diffu-
sion coefficients, still assuming that

��������������

a;b=�

p
� L. If

Da � 1, then during the first stages, the chemical length
rch is (as above) much smaller than all other scales. This
problem can also be reduced to a linear one considering
the advection-diffusion equations in domains populated
by different species, supplemented by the condition that
fluxes of the two chemicals towards the interface are
equal. During the first two stages, the evolution is con-
trolled by the stripe formation process which is insensi-
tive to the diffusion. During the latter, third and fourth,
stages of the evolution in the uneven 
a � 
b case, the
chemicals evolve similarly to what was described above
for the 
a � 
b case. Thus, the above description applies
to the general, 
a � 
b, case as well.

We conclude with some general remarks. A compli-
cated spatiotemporal behavior for the binary chemical
reaction in a chaotic flow is established. Evolution of the
chemicals near the boundary (where mixing is slower
than in the bulk) determines the intermediate stages of
the reaction. Those boundary-dominated stages were not
singled out in previous publications on the subject simply
because the stages are not observed in an infinite [4] or
periodic [19] flow systems. In our setting, the lamellar
structure (which is statistically isotropic in bulk and
strongly anisotropic near boundaries) is dynamically gen-
erated by advection. (This situation is essentially differ-
ent from the one considered in [20], where the lamellar
structure is created initially and no advection participates
in subsequent evolution.) We focused here on large scale
chaotic flows with the size of the box being of the order of
the major scale of the flow. However, it is also of interest
for applications to describe chemical reaction accelera-
tion in turbulent flows, which are smooth only inside the
viscous range of scales. In this case, with a large value of
the viscous to dissipative scales ratio, a consideration
similar to those presented in this Letter is applicable.
We plan to examine the more complicated case in the
future. Also, the approach developed in this Letter is
generalizable for other, more complicated, types of chem-
ical reaction, e.g., competing chemical reactions. For
completeness, let us also mention another case of interest
which is realized at moderate Da, large Pe, and if one of
chemicals is present in abundance. The joint effect of
advection and chemistry is different in this case (than
in the problem discussed in this Letter), even though rich
134501-4
multiscale structure of spatial correlations is also revealed
[21]. A final remark concerns the validity of the hydro-
dynamic description of the chemical reaction dynamics.
It is known that the character of spatial fluctuations in the
initial distribution of chemicals may essentially influence
the long-time behavior in diffusion-limited chemical sys-
tems [22,23]. In some cases(of low space dimensionality,
d � 2) large scale renormalization of the concentration
fields due to the small scale fluctuations could be impor-
tant (see, e.g., [24]). In our case, however, this does not
happen because the long-time correlations are completely
destroyed by chaotic advection.
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